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Abstract

In Central Amazonian floodplains (varzea), trees are subfected to periodic flocding.
The present study describes seasonal variation of phenology and photosynthetic
COs-assimifation in relation to flooding in six tree species with different growth strategies.
Under flooding, leaf senescence increased and photosynthetic assimilation declined.
Before the end of flooding, new leaves were flushed and CO;-assimilation rose lo values
which are comparable to the dry phase over a considerable part of the aquatic phase. No
trends were observed relating fo different growth strategies in response to periodic
flooding.
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Resumo

Nas édreas inundéveis de varzea da Amazénia Central as arvores estdo sujeitas a
inundagéo periddica. O presente estudo descreve a variacdo da fenologia e assimifagdo
fotossintética com respeito a inundag¢do em seis espécies de arvores com diferentes estra-
tégias de crescimento. Sob inundagdo, a senescéncia das folhas aumentou e a taxa de as-
similagdo fofossintética diminuiu. Antes do fim da inundagdo, brotaram folhas novas e a
taxa de assimilacdo subiu atingindo valores comparéveis ao periodo ndo inundado. O pa-
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pel das diferentes estratégias de crescimento parece ter pouca importancia nas respostas
a inundagdo periodica

Introduction

In seasonal varzea forests, the nutrient rich white water floodplains of the
Aimazon and its tributaries, trees are subjected to periods of flooding of up to
seven months a year (Junk 1989). Water levels can reach 8 m on the tree (Figure
1), submerging seedlings and small trees. Tall, adult trees, or trees standing on
higher levels in the flooding gradient, suffer inundation of the roots and parts of the
stems which causes a lack of oxygen in the rhizosphere which affects tree growth
(Figure 2). Gessner (1968) compared the growth conditions in the aquatic phase
with temperate winters and introduced the term "physiological winter”, indicating
that the active period is the dry phase only. Leaf fall and reductions of growth and
metabolic activity which he observed in the aquatic phase led him to the assump-
tion that trees in floodplains reduce their activity like trees of temperate forests in
the period of unfavourable conditions. In fact, most tree species in Central Amazo-
nian floodplains form annual growth rings as a consequence of regular growth re-
ductions (Worbes 1989). Physiological, anatomical and morphological alterations,
e.g. root formation and function, leaf respiration, leaf metabolite and chlorophyll
content, water potential and photosynthetic O,-production are induced by flooding
in varzea species (Meyer 1991, Parolin 1997, Schliter 1989, Schliter & Furch
1992, Schliter et al. 1993, Scholander & Perez 1968). There is a seasonal
variation of the metabolic activity in adult trees which seems to be linked to the
periodicity of leaf fall and the production of new leaves (Parolin 2000, Piedade et
al. in press). Trees shed their leaves and reduce the production of new leaves in
the period of unfavourable hydric conditions (Wittmann & Parolin 1999). Leaves
are shed to reduce the transpirational surface, an adaptation which regulates tree
water status and reduces both drought and flocd stress (Borchert 1994, Medina
1983). Tree growth is then reduced leading to the formation of growth rings
(Worbes 1989). When tree water status has recovered, new leaves can be flushed
and tree growth restarts (Borchert 1994). Photosynthetic CO,-assimilation is a di-
rect expression of the metabolic activity of a tree. Reductions are caused by leaf
senescence, nutrient supply and environmental factors, as e.g. flooding
{Pezeshki 1993, Pezeshki et al. 1996, Sestak 1985).

The aim of the present study was to describe the patterns of vegetative
phenology and photosynthetic CO5-assimilation. The main question was: does
the aquatic phase represent an unfavourable period which is comparable to the
temperate winter as postulated by Gessner? The present study tried also to con-
sider the role of different growth strategies by comparing species which are typical
pioneers and non-pioneers (sensu Swaine & Whitmore 1988), and which are ev-
ergreen and deciduous. It was aimed to answer the question whether species with
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different growth strategies reacted to the flooded period with similar changes of
photosynthetic activity.

Methods

The study was carried out in the whitewater floodplains in the vicinity of
Manaus, Brazil. The floodplain forests of these sites are situated between 21 and
27 m above sea level and are subjected to a maximum high water level of 8 m, cor-
responding to a mean period of inundation of up to seven months per year (Junk
1989). Seasonal rainfall from December to May is followed by a dry season from
June to November (Figure 4). Three to four months after the onset of the rains, the
water level of the rivers rises and reaches the highest peak in June at 28 + m
above sea level. The lowest level is reached in November at 18 + m above sea
level. The water level oscillation of approximately 10 mis very regular and predict-
able. The study period from April 1994 to June 1995 included one terrestrial and
two aquatic phases. Six common tree species of the whitewater floodplains, with
different growth strategies, were chosen for this study (Table 1). Vegetative
phenology, i.e. the timing of leaf fall and of the production of new leaves, was mon-
itored qualitatively every month in five chosen individuals per species all occurring
on the same elevation in the flood gradient and of similar diameter at breast height
(dbh), located randomly in the four study areas. A tree was called deciduous if it
lost almost all the leaves and the remaining leaves were senescent. Evergreen
trees were those which changed leaves continuously. Once a month,
photosynthetic CO,-uptake was measured between 9.00 and 12.00 a.m. with an
infra-red gas analyser (IRGA, ADC LCA-2, Analytical Development Co. Ltd.,
Hoddesdon, Herts, UK) on five adult individuals of the six chosen tree species in
the field. Ten fully expanded, non-flooded leaves of the marked individuals of each
species were chosen for measurements at high quantum flux density, with
photosynthetically active radiation (PFD) over 2000 pmol m2 571 producing maxi-

mal rates of photosynthesis (A;4,)-

Results

Phenology

Leaf shedding and replacement occurred continuously in the evergreen
species (Cecropia latiloba, Senna reticulata and Nectandra amazonum). In the
deciduous species (Crateva benthami, Tabebuia barbata and Vitex cymosa), a
short leafless period (4 weeks) followed pronounced leaf fall which lasted for two
to three months in the period of highest water levels. The flush of new leaves
started or occurred completely before the end of flooding in all species. The pio-
neer species (Cecropia latiloba, Senna reticulata) produced new leaves during
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the whole year, but leaf production was reduced for two to four months in the pe-
riod of the highest water peak.

Photosynthetic CO,-uptake

CO,-uptake as an average was lower during the aquatic phase than in the
non-flooded terrestrial phase in all species (Table 1, Figure 5). CO,-uptake in the
aquatic phase was around 10 % lower than in the terrestrial phase in the pioneer
species, and between 20 and 50 % in the non-pioneer species. Only in Cecropia
latiloba were the differences not statistically significant.

In all species mean CO,-uptake remained high in the first one to four
months of flooding, ranging from an average of 9.3 pmol m2 s*1 (Nectandra
amazonum) to 20.0 umol m2 s-1 (Senna reticulata). Maximum measured CO,-up-
take was 24.5 umol m=2 s-1 in Senna reticulata, minimum 3.2 pmol m2 s in
Tabebuia barbata and Nectandra amazonum. In the flooded period, mean
CO,-uptake declined by 8 % (Senna reticulata) to 49 % (Vitex cymosa) for some
weeks to months, reaching mean values between of 7.6 umol m-2 s-1 (Nectandra
amazonum) and 18.4 umol m2 s-1 (Senna reticulata). In this period, deciduous
trees shed their leaves. Mean CO,-uptake rose again before the end of the
aquatic phase reaching values which remained high through the terrestrial phase.
With the onset of flooding, mean CO,-uptake was reduced again after one to two
months.

Discussion

The six chosen species showed characteristic seasonal variations of the
vegetative phenology and photosynthetic CO,-uptake which are summarized in
Figure 6. The scheme represents the plasticity of photosynthetic activity of the six
species during the annual cycle. In the aquatic phase, CO,-uptake is high (a) in
the first months of flooding, and is reduced after some months (b). In the second
part of the aquatic phase, CO,-uptake rises again (c) to levels which are compara-
ble to those of the terrestrial phase, or even more elevated (d). This takes place
before the end of flooding in all species. During the terrestrial phase, the range of
photosynthetic assimilation is smaller again (e), and reductions (f) can occur
which are probably related to water shortage in the driest months.

The seasonal changes of photosynthetic assimilation of the chosen spe-
cies was closely related to leaf age and indirectly determined by flooding. With
flooding of the roots, tree water status probably decreased, leaves were shed to
reduce transpirational surface and water loss, and photosynthetic assimilation de-
creased as a consequence of lower photosynthetic capacity of senescent leaves
(Sestak 1985). When new leaves were flushed, photosynthetic CO,-uptake rose
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again although the roots were still flooded, and reached a maximum when the
young leaves were fully expanded.

The aquatic phase represented an unfavourable period for the six tree spe-
cies, as shown by the shedding of leaves, by the reduced production of new
leaves, and by the reduction of photosynthetic assimilation during inundation. The
terrestrial phase was the main vegetation period for the six species. Still, the
aquatic phase cannot be considered as a "physiological winter” as postulated by
Gessner (1968) since this implies a reduction of growth and metabolic activity
which lasts for the whole unfavourable period. This is clearly not the case in the six
species analysed in this study. The trees performed high photosynthetical assimi-
lation in a considerable part of the aquatic phase, where values were reached that
were comparable or even higher than those of the terrestrial phase. Furthermore,
in the months where photosynthetic assimilation was reduced, most species pro-
duced flowers or fruits (Gottsherger 1978, Kubitzki & Ziburski 1994). The
photosynthetic activity of the trees was high the whole year round, not only during
the terrestrial phase. There was no period of rest or a reduced metabolic activity
lasting for the whole aquatic period in the six chosen species.

The role of different growth strategies did not seem to be important con-
cerning the reactions to flooding. Although pioneer species had less reductions of
photosynthetic assimilation than non-pioneers when flooded, most seasonal
changes did not show a pattern linked to the growth strategies. Most species of
the varzea have morphological adaptations like advetitious roots, lenticels, or
pressure ventilation (Graffmann 2000, Parolin 1998, Waldhoff et al. 1998), which
allow them to maintain growth and photosynthetic activity at high levels also with
waterlogging. The analyzed species of the floodplains do not show prolonged pe-
riods of rest. Even leaf-shedding species produced flowers and fruits in the 2-8
weeks in which they did not have leaves, so that in spite of flooding, physiological
activity was high during the whole year. These species are not specialized on one
hydric condition, but are adapted to the change between extreme hydric condi-
tions. With this, they reflect the optimal compromise (sensu Stearns 1992) for a life
in the periodical change between drought and prolonged flooding.
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Table 1: Species chosen for this study, with successional stage (sensu Swaine
and Whitmore 1988) and phenological traits, and difference between the COy-up-
take at maximal quantum flux density (A,,) in the terrestrial and the aquatic
phase in percent, with F-ratio of the ANOVA and statistical probability p.

Species Successional stage | Phenology | Difference | F-ratio | p
Amax [%]
Cecropia latiloba (Cecropiaceae) |pioneer evergreen -10.5 2.21 | ns.
Senna reticulata (Caesalpiniaceae) |pioneer evergreen -7.8 18.07 | ***
Nectandra amazonum (Lauraceae) |non-pioneer evergreen -18.7 6.36 *
Crateva benthami (Capparidaceae) | non-pioneer deciduous -19.7 6.02 *
Tabebuia barbata (Bignoniaceae) |non-pioneer deciduous -21.9 13.38 | **
Vitex cymosa (Verbenaceae) non-pioneer deciduous -49.2 161.05 | ***
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Figure 1: Photograph taken al low viater illustrating the change of the water levelin Central Amazonian floodplains: on
thetree stem, the mark of the former year's high wialer levelis visible. Behind, a small sidearm of the Amazen River.
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Figure 2: Varzea forest in the flooded period (Ilha da Marchantaria).
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Figure 3: Varzea forest with the chosen species of different successional stages. On the forest border there is a
monospecilic stand of Cecropia fatiloba, behind which grows a diverse forest with species of higher successional

slages.
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MEAN WATER LEVEL AND PRECIPITATION
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Figure 4: Mean monthly precipitation and mean river level measured at the harbour of Manaus (Rio Negro); average
from 1987 to 1995.
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Figure 6: Schematic presentation of changes of photosynthetic CO2-uptake during the annual cycle in the six speci-
es (explanations see text).



